במתמטיקה, ההרכבה של פונקציות היא פונקציה המתקבלת מהפעלת פונקציות בזו אחר זו.
ובאופן פורמלי: אם פונקציה מ- ל- ו- פונקציה מ- ל-, אז ההרכבה (בסדר זה, קרי: מורכבת על ) היא הפונקציה מ- ל- המוגדרת לפי . ההרכבה מוגדרת בתנאי שהתמונה של הפונקציה הראשונה () מוכלת בתחום של הפונקציה השנייה ().
התכונה החשובה ביותר של הרכבת פונקציות היא האסוציאטיביות של הפעולה: אם אפשר להרכיב את על ואת על , אז . בזכות תכונה זו, והעובדה שלמערכות של פונקציות יש תפקיד מרכזי כל-כך במתמטיקה, מרבית הפעולות במבנים אלגבריים, ובראשם החבורות, הם אסוציאטיביים. לדוגמה, אוסף כל הפונקציות מקבוצה לעצמה הוא מונויד. פונקציה שהיא פונקציה חד-חד-ערכית ועל היא הפיכה: קיימת כך ש- וגם (דהיינו, ההרכבה היא פונקציית הזהות על , ובנוסף ההרכבה היא פונקציית הזהות על ). למעשה, אם קיימת פונקציה שכזו היא יחידה, ולכן מכונה "הפונקציה ההופכית של " ולרוב מסומנת ב-.
הרוב המכריע של הפונקציות המופיעות בחישובים מדעיים מתקבלות כהרכבות של פונקציות יסודיות; הרכבות כאלה נקראות פונקציות אלמנטריות. למשל, הפונקציה היא ההרכבה כאשר ו-.
ניתן לדון גם בגבול של הרכבת פונקציות ממשיות: אם ו- פונקציות שעבורן וכן גם קיים הגבול (עבור כלשהם), אז הגבול של הרכבת הפונקציות כאשר קיים ושווה ל-. אם מתקיים לפחות אחד משני התנאים הבאים, אז גם מתקיים: רציפה ב- (כלומר ) או שקיימת סביבה מנוקבת של שבה . שני תנאים אלו מספיקים אך לא הכרחיים.
כלל השרשרת קובע את הנגזרת של הרכבת פונקציות, באופן התלוי בנגזרות של המרכיבים.